Econ 3790: Business and Economic Statistics

Instructor: Yogesh Uppal

Email: yuppal@ysu.edu

Chapter 11 Inferences About Population Variances

- Inference about a Population Variance
 - Chi-Square Distribution
 - Interval Estimation of σ^2
 - Hypothesis Testing

Chi-Square Distribution

• We will use the notation χ_{α}^{2} to denote the value for the chi-square distribution that provides an area of α to the right of the stated χ_{α}^{2} value.

• For example, Chi-squared value with 5 degrees of freedom (df) at α =0.05 is 11.07.

Interval Estimate of a Population Variance

$$\frac{(n-1)s^2}{\chi^2_{\alpha/2}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{(1-\alpha/2)}}$$

where the χ^2 values are based on a chi-square distribution with n - 1 degrees of freedom and 1 - α is the confidence coefficient.

 Interval Estimate of a Population Standard Deviation

$$\sqrt{\frac{(n-1)s^2}{\chi^2_{\alpha/2}}} \le \sigma \le \sqrt{\frac{(n-1)s^2}{\chi^2_{(1-\alpha/2)}}}$$

Taking the square root of the upper and lower limits of the variance interval provides the confidence interval for the population standard deviation.

• Example: Buyer's Digest (A): Buyer's Digest rates thermostats manufactured for home temperature control. In a recent test, 10 thermostats manufactured by ThermoRite were selected and placed in a test room that was maintained at a temperature of 68°F. The temperature readings of the ten thermostats are shown on the next slide.

- Example: Buyer's Digest (A)
- We will use the 10 readings below to develop a 95% confidence interval estimate of the population variance.

Thermostat	1	2	3	4	5	6	7	8	9	10
Temperature	67.4	67.8	68.2	69.3	69.5	67.0	68.1	68.6	67.9	67.2

For n - 1 = 10 - 1 = 9 d.f. and $\alpha = .05$

> Selected Values from the Chi-Square Distribution Table

Degrees	Area in Upper Tail								
of Freedom	.99	.975	.95	.90	.10	.05	.025	.01	
5	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.086	
6	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	
7	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	
8	1.647	2.180	2.733	3.490	13.362	15.507	17.535	20.090	
9	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	
10	2.558	3.247	3. 10	4.865	15.987	18.307	20.483	23.209	

Our $\chi^2_{.975}$ value

• Sample variance s^2 provides a point estimate of σ^2 .

$$s^{2} = \frac{\sum (x_{i} - \overline{x})^{2}}{n - 1} = \frac{6.3}{9} = .70$$

$$\frac{(10-1).70}{19.02} \le \sigma^2 \le \frac{(10-1).70}{2.70}$$

$$.33 \le \sigma^2 \le 2.33$$

- Left-Tailed Test
- Hypotheses

$$H_0: \sigma^2 \ge \sigma_0^2$$

$$H_a: \sigma^2 < \sigma_0^2$$

where σ_0^2 is the hypothesized value for the population variance

Test Statistic

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

- Left-Tailed Test (continued)
- Rejection Rule

Critical value approach:

Reject
$$H_0$$
 if $\chi^2 \le \chi^2_{(1-\alpha)}$

p-Value approach:

Reject H_0 if p-value $\leq \alpha$

where $\chi^2_{(1-\alpha)}$ is based on a chi-square distribution with n-1 d.f.

- Right-Tailed Test
- Hypotheses

$$H_0: \sigma^2 \le \sigma_0^2$$

$$H_a: \sigma^2 > \sigma_0^2$$

where σ_0^2 is the hypothesized value for the population variance

Test Statistic

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

- Right-Tailed Test (continued)
- Rejection Rule

Critical value approach:

Reject
$$H_0$$
 if $\chi^2 \ge \chi_\alpha^2$

p-Value approach:

Reject H_0 if p-value $\leq \alpha$

where χ_{α}^{2} is based on a chi-square distribution with n-1 d.f.

- Two-Tailed Test
- Hypotheses

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_a: \sigma^2 \neq \sigma_0^2$$

where σ_0^2 is the hypothesized value for the population variance

Test Statistic

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

- Two-Tailed Test (continued)
- Rejection Rule

 Critical value

Critical value approach:

Reject
$$H_0$$
 if $\chi^2 \le \chi^2_{(1-\alpha/2)}$ or $\chi^2 \ge \chi^2_{\alpha/2}$

p-Value approach:

Reject
$$H_0$$
 if p -value $\leq \alpha$

where $\chi^2_{(1-\alpha/2)}$ and $\chi^2_{\alpha/2}$ are based on a chi-square distribution with n-1 d.f.

Example: Buyer's Digest (B): Recall that Buyer's Digest is rating ThermoRite thermostats. Buyer's Digest gives an "acceptable" rating to a thermostat with a temperature variance of 0.5 or less.

We will conduct a hypothesis test (with $\alpha = .10$) to determine whether the ThermoRite thermostat's temperature variance is "acceptable".

- Example: Buyer's Digest (B)
- Using the 10 readings, we will conduct a hypothesis test (with α = .10) to determine whether the ThermoRite thermostat's temperature variance is "acceptable".

Thermostat	1	2	3	4	5	6	7	8	9	10
Temperature	67.4	67.8	68.2	69.3	69.5	67.0	68.1	68.6	67.9	67.2

Hypotheses

$$H_0: \sigma^2 \le 0.5$$
 $H_a: \sigma^2 > 0.5$

Rejection Rule

For n - 1 = 10 - 1 = 9 d.f. and $\alpha = .10$

> Selected Values from the Chi-Square Distribution Table

Degrees	Area in Upper Tail								
of Freedom	.99	.975	.95	.90	.10	.05	.025	.01	
5	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.086	
6	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	
7	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	
8	1.647	2.180	2.733	3.490	13.362	15.507	17.535	20.090	
9	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	
10	2.558	3.247	3.940	1.865	15.987	18.307	20.483	23.209	

Our $\chi^2_{.10}$ value

Rejection Region

The sample variance $s^2 = 0.7$

TestStatistic

$$\chi^2 = \frac{9(.7)}{.5} = 12.6$$

Conclusion

Because χ^2 = 12.6 is less than 14.684, we cannot reject H_0 . The sample variance s^2 = .7 is insufficient evidence to conclude that the temperature variance for ThermoRite thermostats is unacceptable.